

4.5Ω Dual Bilateral SPST Analog Switch

1 FEATURES

• Bandwidth: 300MHz

High Speed, Typically 30ns

Supply Range: +1.8V to +5.5V

Low ON-State Resistance: 4.5Ω(TYP)

• Rail-to-Rail Operation

• TTL/CMOS Compatible

Extended Industrial Temperature

Range: -40°C to +125°C

Packages: DFN2x3-8

2 APPLICATIONS

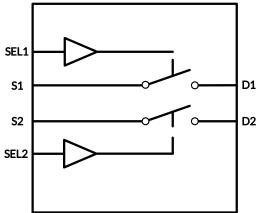
- Wireless Devices
- Audio and Video Signal Routing
- Portable Computing
- Wearable Devices
- Signal Gating, Chopping, Modulation or Demodulation (Modem)
- Cell Phones

3 DESCRIPTIONS

The RES2066 is a bidirectoral2-channel single-pole single-throw (SPST) analog switch, which is designed to operate from 1.8V to 5.5V.

The RES2066 device can hand le bothanab gand d g ital signals. It features bandwidth(300MHz) and low onresistance (4.5 Ω TYP).

Each switch section has its own enable-input control (SEL). A high-level voltage applied to SEL turns on the associated switch section.

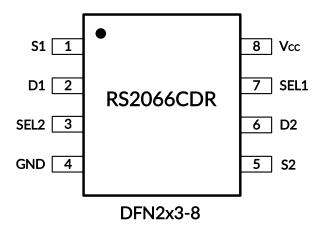

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE(NOM)
RES2066CDR	DFN2X3-8	2.00mm×3.00mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

4 FUNCTION ALD IAGRAMS OF RES2066


6 PACKAGE/ORDERING INFORMATION (1)

PRODUCT	ORDERING TEMPERATURE NUMBER RANGE				MSL (3)	PACKAGE OPTION
RES2066	RES2066CDR	-40°C ~+125°C	DFN2X3-8	RES2066CDR	MSL3	Tape and Reel, 3000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

7 PIN CONFIGURATIONS

7.1 Pin Description

v_ 1										
NAME	PIN	I/O	DESCRIPTION							
S1	1	I/O	Bidirectional signal to be switched							
D1	2	I/O	Bidirectional signal to be switched							
SEL2	3	I	Controls the switch (L = OFF, H = ON)							
GND	4	-	Ground							
S2	5	I/O	Bidirectional signal to be switched							
D2	6	I/O	Bidirectional signal to be switched							
SEL1	7	I	Controls the switch (L = OFF, H = ON)							
Vcc	8	-	Power Supply							

⁽¹⁾ I = Input, O = Output.

7.2 Function Table

/ IZ : diletieli i dbie				
SELECT INPUTS	SWITCH STATUS			
SEL1/SEL2	SWITCH STATUS			
High	All Switches ON			
Low	All Switches OFF			

NOTE: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.

8 SPECIFICATIONS

8.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

SYMBOL	PARAMET	MIN	MAX	UNIT	
V _{CC}	Supply Voltage (2)		-0.3	6.0	
V _{IN}	Input Voltage (2) (3)		-0.3	6.0	V
Vo	Switch I/O Voltage (2)(3)(4)	-0.3	V _{CC} +0.3		
lıĸ	Control input clamp current	V _I <0		-50	
I _{I/OK}	I/O port diode current	$V_{I/O}$ < 0 or $V_{I/O}$ > V_{CC}		-50	^
lτ	On-state switch current	V _{IO} =0 to V _{CC}	-50	50	mA
	Continuous current through V_{CC} or G	ND .	-100	100	
Δ.,	Package thermal impedance (5)				°C/W
θ_{JA}	Package thermal impedance (5) DFN2X3-8			215	C/ VV
ΤJ	Junction Temperature (6)	-40	150	°C	
T _{stg}	Storage temperature		-65	150]

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (2) All voltages are with respect to ground, unless otherwise specified.
- (3) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (4) This value is limited to 5.5 V maximum.
- (5) The package thermal impedance is calculated in accordance with JESD-51.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

				VALUE	UNIT
	V _(ESD)		Human-Body Model (HBM)	±2000	V
		Electrostatic discharge	Machine Model (MM)	±300	V

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNIT
Vcc	Supply Voltage	1.8	5.5	٧
TA	Operating temperature	-40	+125	°C

8.4 Electrical Characteristics

 $V_{CC} = 5.0 \text{ V}$ or 3.3V, FULL= -40°C to +125°C, Typical values are at $T_A = +25$ °C. (unless otherwise noted)

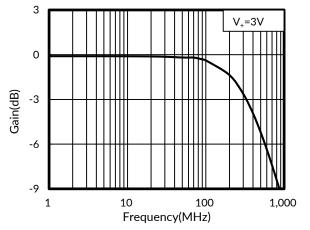
PARAMETER	SYMBOL	CONDITIONS	Vcc	TA	MIN ⁽²⁾	TYP(3)	MAX ⁽²⁾	UNIT
ANALOG SWITCH								
Analog Signal Range	Vs, VD			FULL	0		Vcc	٧
			5V	+25°C		4.5	8	Ω
On-Resistance	Ron	$V_S = V_{CC}/2$,	50	FULL			8.5	Ω
On-Resistance	KON	I _{SD} = -10mA, Switch ON, See Figure 4	3.3V	+25°C		7	10	Ω
			3.31	FULL			10.5	Ω
			<i>E</i> \/	+25°C		0.15	0.3	Ω
On-Resistance Match	AD	$V_S = V_{CC}/2$,	5V	FULL			0.4	Ω
Between Channels	ΔRon	I _{SD} = -10mA, Switch ON, See Figure 4	0.014	+25°C		0.15	0.3	Ω
			3.3V	FULL			0.4	Ω
	Rflat(on)		5V	+25°C		2	3	Ω
O D : 4 El 4		0 ≤ (Vs) ≤Vcc /2,		FULL			3.3	Ω
On-Resistance Flatness		I _{SD} = -10mA, Switch ON, See Figure 4	3.3V	+25°C		3	4	Ω
				FULL			4.3	Ω
Source, Drain OFF Leakage Current	I _{D(OFF)} , I _{S(OFF)}	U.3 V See Figure 5	1.8 to 5.5V	FULL			1	μΑ
Channel ON Leakage Current	I _D (ON), I _S (ON)	V_D = 0.3V, Open V_S = Open, 0.3V See Figure 6	1.8 to 5.5V	FULL			1	μΑ
DIGITAL CONTROL INP	UTS (1)							
In t. I I'ala \ /alta a.a	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5V	FULL	1.5			٧
Input High Voltage	V _{IH}		3.3V	FULL	1.3			V
Innut Lour Voltage	\/		5V	FULL			0.6	V
Input Low Voltage	VIL		3.3V	FULL			0.5	٧
Input Leakage Current	I _{IN}	V _{IN} = V _{IO} or 0	1.8 to 5.5V	FULL			1	μΑ

⁽¹⁾ All unused digital inputs of the device must be held at V_{10} or GND to ensure proper device operation.

⁽²⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

Electrical Characteristics (continued)


Vcc= 5.0 V or 3.3V, FULL= -40°C to +125°C, Typical values are at T_A = +25°C (unless otherwise noted)

PARAMETER	SYMBOL	CONDITION	Vcc	TA	MIN	TYP	MAX	UNIT	
DYNAMIC CHARACTER	RISTICS							•	•
Turn On Times	4	$V_S = V_{CC}$, $R_L = 300\Omega$, C	_L = 35pF,	5V	+25°C		30		
Turn-On Time	ton	See Figure 7		3.3V	+25°C		40		ns
Turn-Off Time	+	$V_S = V_{CC}$, $R_L = 300\Omega$, C	L = 35pF,	5V	+25°C		25		nc
Turni-Off Tillie	toff	See Figure 7		3.3V	+23 C		30		ns
Break-Before-Make	4	$V_S = 3V$, $R_L = 300\Omega$, $C_L = 35pF$, See Figure 8		5V	+25°C		5		
Time Delay	tввм			3.3V			8		ns
-3dB Bandwidth	BW	Switch ON, $R_L = 50\Omega$,	See Figure 9	5V	+25°C		300		MHz
Off Isolation	O _{ISO}	$R_L = 50\Omega$, Switch OFF, $f = 10MHz$			+25°C		-52		dB
Off isolation		See Figure 10	f = 1MHz		+25°C		-71		dB
Source, Drain OFF Capacitance	Cs(OFF), CD(OFF)	V _S = V _{CC} /2 or GND, Sw	ritch OFF		+25°C		5		pF
Source, Drain ON Capacitance	C _{S(ON)} , C _{D(ON)}	V _S = V _{CC} /2 or GND, Sw		+25°C		15		pF	
POWER REQUIREMEN	TS								
Power Supply Range	Vcc				FULL	1.8		5.5	V
Power Supply Current	Icc	$V_{IN} = GND \text{ or } V_{CC}$		5.5V	FULL			1	μΑ

8.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

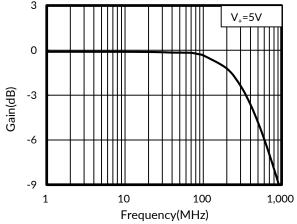


Figure 1. Bandwidth vs Frequency

Figure 2. Bandwidth vs Frequency

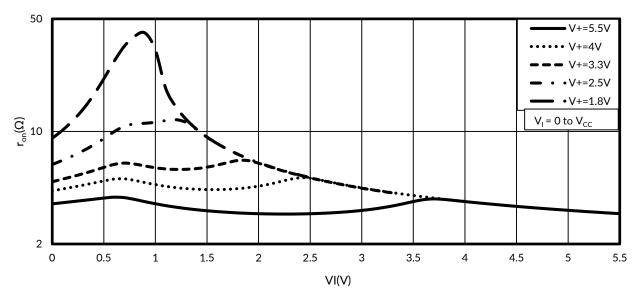


Figure 3. Typical ron as a Function of Input Voltage

9 PARAMETER MEASUREMENT INFORMATION

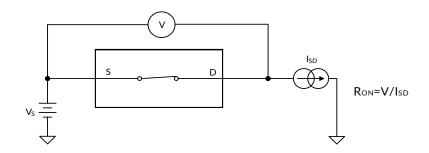


Figure 4. ON-State Resistance (RoN)

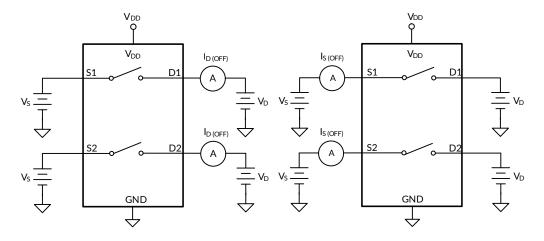


Figure 5. OFF-State Leakage Current (ID (OFF), IS (OFF))

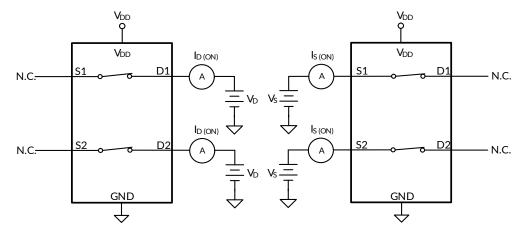


Figure 6. ON-State Leakage Current (I_{D (ON)}, I_{S (ON)})

PARAMETER MEASUREMENT INFORMATION (continued)

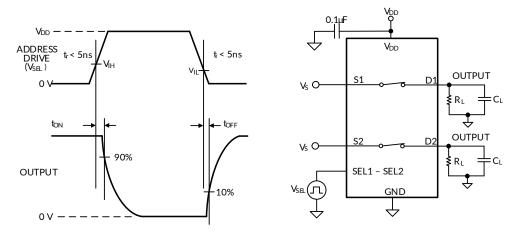


Figure 7. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

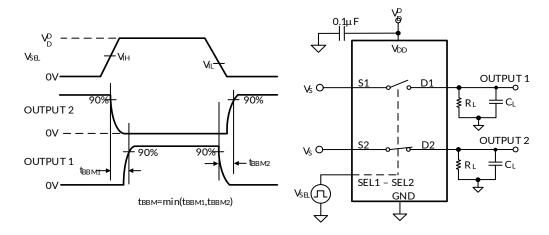


Figure 8. Break-Before-Make Time (t_{BBM})

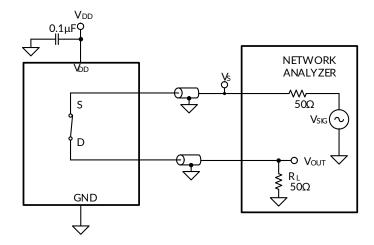


Figure 9. Bandwidth (BW)

PARAMETER MEASUREMENT INFORMATION(continued)

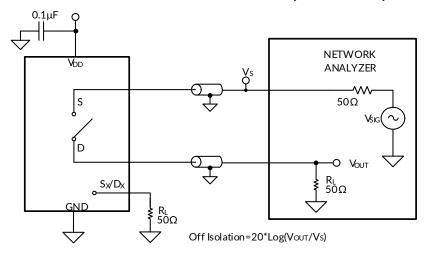


Figure 10. OFF Isolation (O_{ISO})

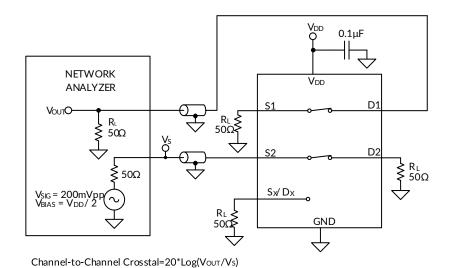


Figure 11. Crosstalk (X_{TALK})

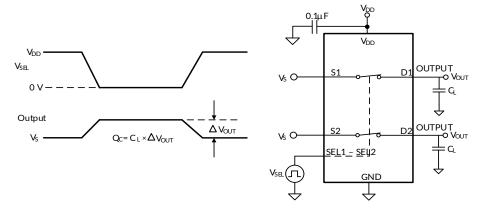
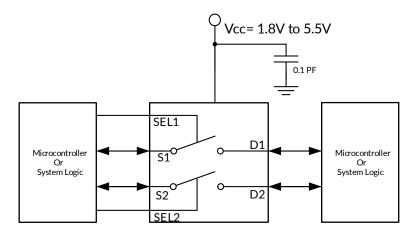
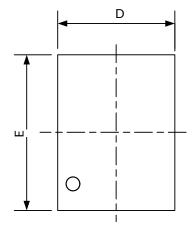
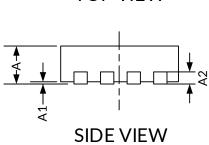


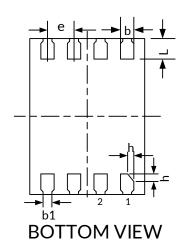
Figure 12. Charge Injection (Qc)

10 TYPICAL APPLICATION

The RES2066 can be used in any situation where aD ual SPSTswitchwould be used and as of id-state, voltage controlled version is preferred The RS2066 allows on/off control of analog and digital signals with a digital control signal. All input signals should remain between OV and $V_{\rm CC}$ for optimal operation.

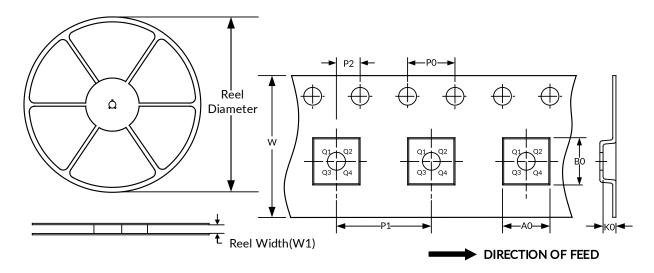




Figure 13. Typical Application Schematic



DFN2X3-8 (3)

Complete	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A (1)	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	0.180	0.250	0.007	0.010		
b	0.180	0.300	0.007	0.012		
b1	0.160	REF (2)	0.006 REF ⁽²⁾			
D (1)	1.900	2.100	0.075	0.083		
E (1)	2.900	3.100	0.114	0.122		
е	0.500 TYP		0.019 TYP			
L	0.350	0.450	0.014	0.018		
h	0.075	0.175	0.003	0.007		


NOTE:

- 1. Plastic or metal protrusions of 0.075mm maximum per side are not included.
- 2. REF is the abbreviation for Reference.
- 3. This drawing is subject to change without notice.

12 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
DFN2X3-8	7"	9.5	2.30	3.30	0.95	4.0	4.0	2.0	8.0	Q2

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.