

4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Output

1 FEATURES

- Control Inputs V_{IH}/V_{IL} Levels are Referenced to V_{CCA} Voltage
- Power-Supply Range:
 V_{CCA} and V_{CCB}: 1.65V to 5.5V
- Vcc Isolation: If Either Vcc is at GND, Both
 Ports are in the High-Impedance State
- I_{OFF}: Supports Partial-Power-Down Mode
 Operation
- Extended Temperature: -40°C to +125°C

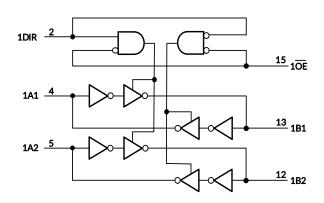
2 APPLICATIONS

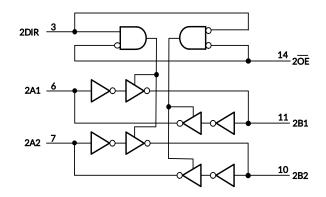
- Desktop PC
- Personal electronics
- Industrial
- Enterprise

3 DESCRIPTIONS

This 4-bit non-inverting bus transceiver is a bidirectional voltage-level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, Both V_{CCA} and V_{CCB} supporting operating voltages from 1.65V to 5.5V, A ports, DIR and $\overline{\rm OE}$ tracks the V_{CCA} supply and B ports tracks the V_{CCB} supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V and 5.5V voltage nodes.

The RES74AVCH4T245PW is designed so that the control pins (DIR and \overline{OE}) are supplied by V_{CCA}. It operates over an ambient temperature range of -40°C to +125°C.


Device Information (1)

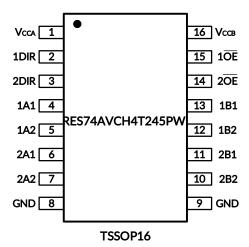

PART NUMBER	PACKAGE	BODY SIZE (NOM)
RES74AVCH4T245PW	TSSOP16	5.00mm×4.40mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

4 Functional Block Diagram

Function Table

CONTROL	INPUTS	OUTPUT C	RCUITS	OPERATION
ŌĒ	DIR	A PORT	B PORT	OPERATION
L	L	Enabled	Hi-Z	B data to A bus
L	Н	Hi-Z	Enabled	A data to B bus
Н	Х	Hi-Z	Hi-Z	Isolation


6 PACKAGE/ORDERING INFORMATION (1)

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING (2)	MSL ⁽³⁾	PACKAGE OPTION
RES74AVCH4T245	RES74AVCH4T245PW	-40°C ~+125°C	TSSOP16	RES74AVCH4T245	MSL3	Tape and Reel, 4000
KES/4AVCH41245						

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

7 PIN CONFIGURATIONS

PIN DESCRIPTION

RES74AVCH4T245PW			
TSSOP16	NAME	TYPE (1)	FUNCTION
1	V _{CCA}	Р	A-port supply voltage. 1.65V≤V _{CCA} ≤5.5V
2	1DIR	I	Direction-control input for "1" ports.
3	2DIR	I	Direction-control input for "2" ports.
4	1A1	I/O	Input/output 1A1. Reference to V _{CCA} .
5	1A2	I/O	Input/output 1A2. Reference to V _{CCA} .
6	2A1	I/O	Input/output 2A1. Reference to V _{CCA} .
7	2A2	I/O	Input/output 2A2. Reference to V _{CCA} .
8	GND	G	Ground.
9	GND	G	Ground.
10	2B2	I/O	Input/output 2B2. Reference to V _{CCB} .
11	2B1	I/O	Input/output 2B1. Reference to V _{CCB} .
12	1B2	I/O	Input/output 1B2. Reference to V _{CCB} .
13	1B1	I/O	Input/output 1B1. Reference to V _{CCB} .
14	2 0 E	1	Output Enable (Active Low). Pull $2\overline{0E}$ high to place all "2" outputs in 3-state mode. Referenced to V _{CCA} .
15	1 0 E	I	Output Enable (Active Low). Pull $1\overline{0}\overline{E}$ high to place all "1" outputs in 3-state mode. Referenced to V _{CCA} .
16	V _{CCB}	Р	B-port supply voltage. 1.65V≤V _{CCB} ≤5.5V

⁽¹⁾ I=input, O=output, I/O=input and output, P=power

8 SPECIFICATIONS

8.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

SYMBOL	PARAMETER		MIN	MAX	UNIT
Vcca	Supply Voltage Range		-0.5	6.5	V
V_{CCB}	Supply Voltage Range		-0.5	6.5	V
		A port	-0.5	6.5	V
$V_{I}^{(2)}$	Input Voltage Range	B port	-0.5	6.5	V
		Control inputs	-0.5	6.5	\ \
Vo ⁽²⁾	Voltage range applied to any output in the high-	A port	-0.5	6.5	
VO(2)	impedance or power-off state	B port	-0.5	6.5	V
Vo ⁽²⁾⁽³⁾	Voltage range applied to any output in the high or	A port	-0.5	V _{CCA} +0.5	V
VO(2)(O)	low state	B port	-0.5	V _{CCB} +0.5	\ \
lıĸ	Input clamp current	V _I <0		-50	mA
Іок	Output clamp current	Vo<0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through Vcca, Vccb or GND			±100	mA
θја	Package thermal impedance (4)	TSSOP16		45	°C/W
ΤJ	Junction Temperature (5)		-40	150	°C
T _{stg}	Storage temperature		-65	+150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
V(ESD)	Electrostatic discharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 (2)	±1500	V
		Machine Model (MM)	±200	V

⁽¹⁾ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

⁽⁵⁾ The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

8.3 Recommended Operating Conditions

V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port.

PARAM	ETER	V _{CCI} ⁽¹⁾	V cco ⁽²⁾	MIN	TYP	MAX	UNIT
C 1 11 (1)	Vcca			1.65		5.5	.,
Supply voltage (1)	V _{CCB}			1.65		5.5	V
		1.65V to 1.95V		V _{CCI} x 0.75			
High-level input	5 (5)	2.3V to 2.7V		V _{CCI} x 0.7			1
Voltage (V _{IH})	Data inputs (5)	3V to 3.6V		V _{CCI} x 0.7			V
		4.5V to 5.5V		V _{CCI} x 0.7			
		1.65V to 1.95V				V _{CCI} x 0.35	
Low-level input	5	2.3V to 2.7V				V _{CCI} x 0.3	.,
Voltage (V _{IL})	Data inputs (5)	3V to 3.6V				V _{CCI} x 0.3	V
		4.5V to 5.5V				Vcci x 0.3	
		1.65V to 1.95V		V _{CCA} x 0.75			
High-level input	Control inputs	2.3V to 2.7V		V _{CCA} x 0.7			,,
Voltage (V _{IH})	(referenced to V _{CCA}) ⁽⁶⁾	3V to 3.6V		V _{CCA} x 0.7			V
	· CCA	4.5V to 5.5V		V _{CCA} x 0.7			
		1.65V to 1.95V				V _{CCA} x 0.35	
Low-level input	Control inputs	2.3V to 2.7V				V _{CCA} x 0.3	.,
Voltage (V _{IL})	(referenced to V_{CCA}) (6) 3V to 3.6V VCCA		V _{CCA} x 0.3	V			
	(referenced to					V _{CCA} x 0.3	
Input voltage (V _I)	Control inputs ⁽⁴⁾			0		5.5	V
Input/output	Active state			0		Vcco	٧
voltage (V _{I/O})	3-state			0		5.5	V
			1.65V to 1.95V			-4	
			2.3V to 2.7V			-8	_
High-level output cui	rrent (IOH)		3V to 3.6V			-24	mA
			4.5V to 5.5V			-32	
			1.65V to 1.95V			4	
			2.3V to 2.7V			8	١.
Low-level output cur	rent (IoL)		3V to 3.6V			24	mA
			4.5V to 5.5V			32	
		1.65V to 1.95V				20	
Input transition rise	D + · · · (3)	2.3V to 2.7V				20	Δ,
or fall rate($\Delta t/\Delta v$)	Data inputs (3)	3V to 3.6V				10	ns/V
		4.5V to 5.5V				5	1
T _A Operating free-air	temperature			-40		125	°C

⁽¹⁾ V_{CCI} is the V_{CC} associated with the data input port.

⁽²⁾ V_{CCO} is the V_{CC} associated with the output port.

⁽³⁾ All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably V_{CCI} or GND) to ensure proper device operation and minimize power.

⁽⁴⁾ All unused control inputs must be held at V_{CCA} or GND to ensure proper device operation and minimize power consumption.

⁽⁵⁾ For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7$ V, V_{IL} max = $V_{CCI} \times 0.3$ V.

⁽⁶⁾ For V_{CCA} values not specified in the data sheet, V_{IH} min = $V_{CCA} \times 0.7$ V, V_{IL} max = $V_{CCA} \times 0.3$ V.

8.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (1)(2)

PAR	AMETER	CONDITIONS	Vcca	V _{CCB}	TEMP	MIN ⁽³⁾	TYP ⁽⁴⁾	MAX ⁽³⁾	UNIT
		I _{OH} = -100μΑ V _I =V _{IH}	1.65V to 4.5V	1.65V to 4.5V		Vcco - 0.1			
		I _{OH} = -4mA V _I =V _{IH}	1.65V	1.65V		1.2			
Vон		I _{OH} = -8mA V _I =V _{IH}	2.3V	2.3V		1.9			٧
		I _{OH} = -24mA V _I =V _{IH}	3V	3V		2.4			
		I _{OH} = -32mA V _I =V _{IH}	4.5V	4.5V		3.8			
		I _{OL} = 100μΑ V _I =V _{IL}	1.65V to 4.5V	1.65V to 4.5V	Full			0.1	
		I _{OL} = 4mA V _I =V _{IL}	1.65V	1.65V				0.45	
V_{OL}		I _{OL} = 8mA V _I =V _{IL}	2.3V	2.3V				0.3	٧
		I _{OL} = 24mA V _I =V _{IL}	3V	3V				0.55	
		I _{OL} = 32mA V _I =V _{IL}	4.5V	4.5V				0.55	
	DIR	V - V ar CND	1 (E)(+o E E)(1 (F)/+a F F)/	+25°C			±1	
lı	DIK	$V_I = V_{CCA}$ or GND	1.65V to 5.5V	1.65V to 5.5V	Full			±2	μΑ
1	A aw D Dawt	\\\ a\\\\\ - O to F F\\	OV	0V to 5.5V	+25°C			±1	
loff	A or B Port	V_1 or V_0 = 0 to 5.5V	0V to 5.5V	0V	Full			±2	μΑ
1 (5)	A aw D Dawt	Vo=Vcco or GND	1 (E)(+o E E)(1 (F)/+o F F)/	+25°C			±1	
IOZ (3)	A or B Port	<u>OE</u> =V _{IH}	1.65V to 5.5V	1.65V to 5.5V	Full			±2	μΑ
	V_{CCA}		1.65V to 5.5V	1.65V to 5.5V	Full			8	
I_{CCA}	supply	$V_I = V_{CCI}$ or $GND^{(6)}$ $I_O = 0$	5V	0V	Full			8	
	current		OV	5V	Full			-2	
	V _{CCB}	CALD (4)	1.65V to 5.5V	1.65V to 5.5V	Full			8	
Iccb	supply	$V_I = V_{CCI}$ or $GND^{(6)}$ $I_O = 0$	5V	0V	Full			-2	μΑ
	current		OV	5V	Full			8	
Icca + Iccb	Combined supply current	V _I = V _{CCI} or GND I _O = 0	1.65V to 5.5V	1.65V to 5.5V	Full			20	μА
A. I.	A port	One A port at V _{CCA} – 0.6 V, DIR at V _{CCA} , B port = open	0)(1, 5,5)(0)/1 5 5)/	Full			50	μА
ΔIcca	DIR	DIR at V _{CCA} – 0.6 V, B port = open A port at V _{CCA} or GND	3V to 5.5V	3V to 5.5V	Full			50	μΑ
∆Іссв	B port	One B port at V _{CCB} - 0.6 V, DIR at GND, A port = open	3V to 5.5V	3V to 5.5V	Full			50	μА
Cı	Control inputs	V _I = V _{CCA} or GND	3.3V	3.3V	+25°C		4		pF
C		A port	3.3V	3.3V	+25°C		8.5		"F
C _{IO}		B port	3.3V	3.3V	+25°C		8.5		pF

⁽¹⁾ V_{CCI} is the V_{CC} associated with the input port.

⁽²⁾ V_{CCO} is the V_{CC} associated with the output port.

⁽³⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

⁽⁴⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

⁽⁵⁾ For I/O ports, the parameter I_{OZ} includes the input leakage current.

⁽⁶⁾ Hold all unused data inputs of the device at V_{CCI} or GND to assure proper device operation.

8.5 Switching Characteristics 8.5.1 V_{CCA}=1.8V±0.15 V

over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	ТО	TEMP		=1.8V .5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		_B =5V 5V ⁽¹⁾	UNIT			
	(INPUT)	(INPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	An	Bn	Full	2.0	24.5	1.5	17.3	1.1	18.8	0.8	18.5	nc			
t _{PHL}	AII	DII	ruii	2.0	24.3	1.5	17.3	1.1	10.0	0.6	10.5	ns			
t _{PLH}	Bn	An	Full	1.0	24.5	0.8	24.4	0.8	23.3	0.7	23.4	ns			
t _{PHL}	БП	AII	Full	1.0	24.3	0.6	24.4	0.6	23.3	0.7	23.4	115			
t _{PHZ}	ŌĒ	An	Full	1.8	31.0	1.7	21.8	1.7	25.2	1.5	20.8	ns			
tplz	OE	AII	Full	1.0	31.0	1.7	21.0	1./	23.2	1.5	20.0	115			
tрнz	ŌĒ	Bn	Full	2.6	28.0	2.1	29.0	2.0	30.4	1.5	28.5	ns			
tplz	OE	DII	i uii	2.0	20.0	2.1	27.0	2.0	30.4	1.5	20.5	115			
t _{РZН}	ŌĒ	An	Full	0.6	29.5	0.5	21.3	0.5	23.3	0.5	18.6	ns			
t _{PZL}	OE	All	i uli	0.0	27.5	0.5	21.0	0.5	20.0	0.5	10.0	113			
tрzн	ŌĒ	Bn	Full	2.0	24.0	1.8	24.0	1.3	38.9	1.0	41.8	nc			
t _{PZL}	UE	DII	Full	2.0	24.0	1.0	24.0	1.3	30.7	1.0	41.0	ns			

⁽¹⁾ This parameter is ensured by design and/or characterization and is not tested in production.

8.5.2 V_{CCA}=2.5V±0.2 V

over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	то	TEMP		=1.8V .5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		₃=5V 5V ⁽¹⁾	UNIT							
	(INPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	An	Bn	Full	1.6	24.6	1.3	16.5	0.9	15.7	0.6	16.9	ns							
t _{PHL}	AII	DII	Full	1.0	24.0	1.5	10.5	0.9	13.7	0.0	10.7	115							
t _{PLH}	Bn	An	Full	1.4	17.4	1.2	16.5	1.1	16.5	1.0	16.6	nc							
t _{PHL}	БП	AII	Full	1.4	17.4	1.2	10.5	1.1	10.5	1.0	10.0	ns							
t_{PHZ}	ŌĒ	An	Full	1.4	29.6	1.7	18.0	1.4	21.6	1.5	15.9	ns							
t _{PLZ}	OE	AII	Full	1.4	27.0	1.7	10.0	1.4	21.0	1.5	13.7	115							
t _{PHZ}	ŌĒ	Bn	Full	2.3	17.4	2.1	16.7	2.0	17.5	1.0	18.5	ns							
t _{PLZ}	OE	DII	ı uli	2.5	17.4	2.1	10.7	2.0	17.5	1.0	10.5	115							
t _{PZH}	 OE	An	Full	1.3	25.3	1.1	16.7	1.1	18.5	1.3	13.5	nc							
t_{PZL}	OE	AII	Full	1.5	23.3	1.1	10.7	1.1	10.5	1.5	13.3	ns							
tрzн	ŌĒ	Bn	Full	2.0	16.7	1.5	15.6	1.3	24.7	1.2	22.3	ns							
t _{PZL}	OE	ווט	i uli	2.0	10.7	1.5	13.0	1.5	۷4./	1.2	22.3	115							

⁽¹⁾ This parameter is ensured by design and/or characterization and is not tested in production.

8.5.3 V_{CCA}=3.3V±0.3 V

over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	ТО	TEMP	VccB	=1.8V .5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		3=5V 5V ⁽¹⁾	UNIT			
174004321210	(INPUT)	(INPUT)	(INPUT)	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	An	Bn	Full	1.6	23.7	1.5	16.7	0.8	15.6	0.6	15.6	ns			
t _{PHL}	All	DII	ruii	1.0	23.7	1.5	10.7	0.6	13.0	0.6	13.0	115			
t _{PLH}	Bn	An	Full	0.8	18.9	0.7	15.7	0.7	15.6	0.7	15.8	ns			
t _{PHL}	ы	All	ı uli	0.0	10.7	0.7	13.7	0.7	13.0	0.7	13.0	115			
tрнz	 OE	An	Full	1.7	27.3	1.6	17.6	1.5	20.5	1.5	15.7	ns			
t _{PLZ}	OL	All	i uli	1.7	27.5	1.0	17.0	1.5	20.5	1.5	13.7	115			
t _{PHZ}	 OE	Bn	Full	2.4	21.9	2.0	19.7	1.7	20.4	0.9	19.7	ns			
t _{PLZ}	OE	DII	ı uli	2.4	21.7	2.0	17.7	1.7	20.4	0.7	17.7	115			
tрzн	 OE	An	Full	0.9	23.7	0.9	16.5	0.7	17.9	0.9	13.7	ns			
t _{PZL}	OE	All	i uli	0.7	23.7	0.7	10.5	0.7	17.7	0.7	13./	115			
t _{PZH}	ŌĒ	Bn	Full	2.3	13.8	1.4	14.4	1.6	17.3	1.1	17.5	ns			
t _{PZL}	OE	ווט	i uli	۷.5	13.0	1.4	14.4	1.0	17.5	1.1	17.5	115			

⁽¹⁾ This parameter is ensured by design and/or characterization and is not tested in production.

8.5.4 V_{CCA}=5V±0.5 V

over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	то	TEMP		=1.8V .5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		_B =5V 5V ⁽¹⁾	UNIT
	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	An	Bn	Full	1.6	23.5	1.4	16.2	0.8	15.8	0.5	15.5	ns
t _{PHL}	All	DII	i uli	1.0	23.3	1.4	10.2	0.0	13.0	0.5	13.5	115
t _{PLH}	Bn	An	Full	0.6	18.8	0.5	16.9	0.5	15.3	0.5	15.4	ns
t _{PHL}	DII	AII	ruii	0.6	10.0	0.5	10.7	0.5	13.3	0.5	13.4	ns
t _{PHZ}	 OE	An	Full	0.4	27.9	0.4	17.4	0.5	19.7	0.5	15.6	ns
t _{PLZ}	OE	All	Full	0.4	27.7	0.4	17.4	0.5	17.7	0.5	13.0	ns
t _{PHZ}	 OE	Bn	Full	2.5	14.9	1.9	14.6	1.6	14.6	0.8	14.8	nc
t _{PLZ}	OE	DII	Full	2.3	14.7	1.7	14.0	1.0	14.0	0.6	14.0	ns
t _{PZH}	 OE	Λn	Full	0.8	24.8	0.8	16.6	0.7	18.5	0.7	13.5	ns
t _{PZL}	OE	An	Full	0.6	24.0	0.0	10.0	0.7	10.5	0.7	13.3	ns
tрzн	ŌĒ	Bn	Full	1.7	12.8	1.4	12.8	1.2	12.8	1.0	12.8	nc
t _{PZL}	UE	DII	Full	1./	12.0	1.4	12.0	1.2	12.0	1.0	12.0	ns

⁽¹⁾ This parameter is ensured by design and/or characterization and is not tested in production.

8.6 Operating Characteristics $T_A=25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CCA} = V _{CCB} =1.8V TYP	V _{CCA} = V _{CCB} =2.5V TYP	V _{CCA} = V _{CCB} =3.3V TYP	V _{CCA} = V _{CCB} =5V TYP	UNIT
C _{pdA} ⁽¹⁾	A-port input, B-port output		3	4	6	9	
	B-port input, A-port output	$C_L=0$, f=10MHz, $t_r=t_f=5ns$	14	17	22	32	r
C _{pdB} ⁽¹⁾	A-port input, B-port output		14	16	21	32	pF
	B-port input, A-port output		3	4	6	9	

⁽¹⁾ Power dissipation capacitance per transceiver.

8.7 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_{CCA}=5V, V_{CCB}=5V, unless otherwise noted.

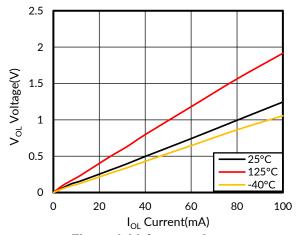


Figure 1. Voltage vs Current

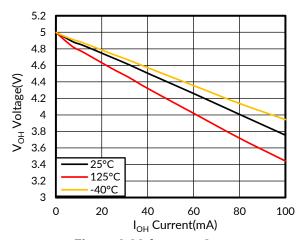
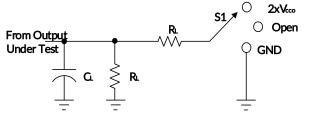
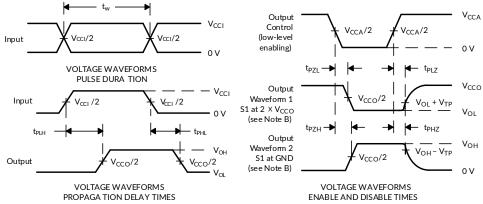



Figure 2. Voltage vs Current


9 Parameter Measurement Information

TEST	S1			
t _{pd}	Open			
t _{PLZ} /t _{PZL}	2 x Vcco			
t _{PHZ} /t _{PZH}	GND			

LOAD CIRCUIT

V _{cc}	CL	RL	V _{TP}
1.8V±0.15V	15pF	2kΩ	0.15V
2.5V±0.2V	15pF	2kΩ	0.15V
3.3V±0.3V	15pF	2kΩ	0.3V
5V±0.5V	15pF	2kΩ	0.3V

NOTES: A. C_L includes probe and jig capacitance.

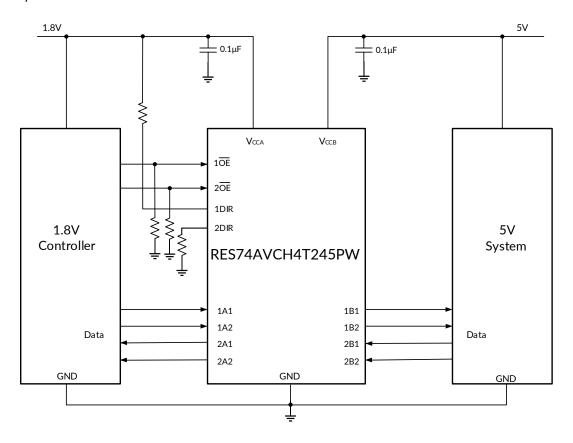
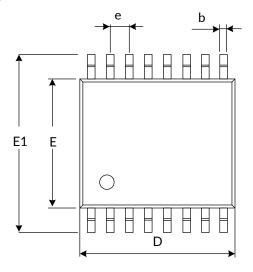

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_0 = 50\Omega$, $dv/dt \ge 1V/ns$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

10 Application Information


The RES74AVCH4T245PW de vice can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The maximum output current can be up to 32 mA when device is powered by 5 V.

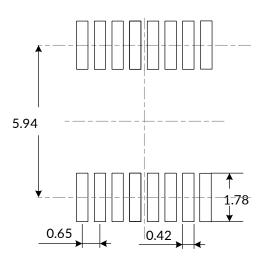
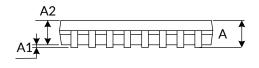


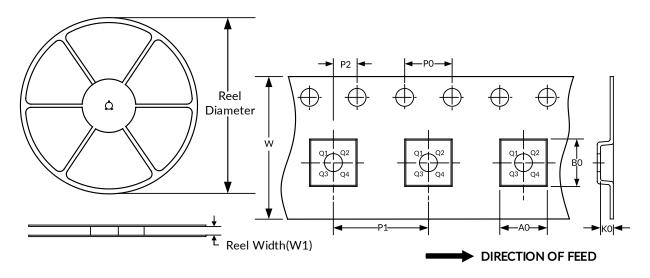
Figure 4. Typical Application Circuit



11 PACKAGE OUTLINE DIMENSIONS TSSOP16 (3)

RECOMMENDED LAND PATTERN (Unit: mm)

Complete	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Min Max		Max		
A (1)		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
D (1)	4.860	5.100	0.191	0.201		
E (1)	4.300	4.500	0.169	0.177		
E1	6.200	6.600	0.244	0.260		
е	0.650(BSC) (2)	0.026(BSC) (2)			
L	0.500	0.700	0.02	0.028		
Н	0.250) TYP	0.010 TYP			
θ	1°	7°	1°	7°		


NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

12 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP16	13"	12.4	6.90	5.60	1.20	4.0	8.0	2.0	12.0	Q1

NOTE:

^{1.} All dimensions are nominal.

^{2.} Plastic or metal protrusions of 0.15mm maximum per side are not included.