

1-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

1 FEATURES

- Control Input threshold Referenced to V_{CCA}
 Voltage
- Power-Supply Range:
 V_{CCA} and V_{CCB}: 1.65V to 5.5V
- V_{CC} Isolation: If Either V_{CC} is at GND, Both Ports are in the High-Impedance State
- Low power consumption,4µA Max
- Output drive up to ±24mA@3.0V
- No Power-Supply Sequencing Required:
 Either V_{CCA} or V_{CCB} can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Extended Temperature: -40°C to +125°C

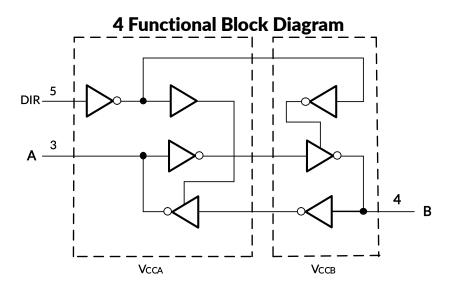
2 APPLICATIONS

- Industrial
- Enterprise
- Telecom, such as VOIP
- Personal electronic

3 DESCRIPTIONS

RES74LVC(AVC)1T45GW is 1-bit non-inverting bus transceiver uses two separate configurable power supply rails. The A port and DIR are designed to track V_{CCA} , which supporting operating voltages from 1.65V to 5.5V, and the B port supporting operating voltages from 1.65V to 5.5V while it tracks the V_{CCB} supply. This allows for universal low-voltage bidirectional translation between any of the 1.8V, 2.5V, 3.3V and 5V voltage nodes.

RES74LVC(AVC)1T45GW is designed for asynchronous communication

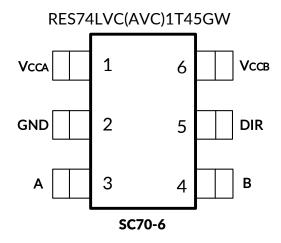

between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry is always active on both A and B ports and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ} .

RES74LVC1T45GW,RES74AVC1T45GW is available in Green SC70-6 packages. It operates over an ambient temperature range of -40°C to +125°C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
RES74LVC(AVC)1T45GW	SC70-6	2.10mm×1.25mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.


6 PACKAGE/ORDERING INFORMATION (1)

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING (2)	MSL (3)	PACKAGE OPTION
RES741T45	RES74LVC(AVC)1T45GW	-40°C ~+125°C	SC70-6 (4)	RES741T45	MSL3	Tape and Reel, 3000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.
- (4) Equivalent to SOT363.

7 PIN CONFIGURATIONS

7.1 PIN DESCRIPTION

RES74LVC(AVC)1T45GW	NAME	TYPE ⁽¹⁾	FUNCTION
SC70-6	NAME	I YPE'-'	FUNCTION
1	V_{CCA}	Р	A Port Supply Voltage.1.65V ≤ V _{CCA} ≤ 5.5V
2	GND	_	Ground.
3	Α	I/O	Input/output A. Reference to V _{CCA} .
4	В	I/O	Input/output B. Reference to V _{CCB} .
5	DIR	I	Direction control. Referenced to V _{CCA} .
6	V_{CCB}	Р	B Port Supply Voltage.1.65V ≤ V _{CCB} ≤ 5.5V.

⁽¹⁾ I=input, O=output, I/O=input and output, P=power.

7.2 Function Table (2)

CONTROL INPUTS (1)	OUTPUT	CIRCUITS	OPERATION
DIR	A PORT	B PORT	OPERATION
L	Enabled	Hi-Z	B data to A bus
Н	Hi-Z	Enabled	A data to B bus

Note:

- (1) The input circuit of the data I/O is always active.
- (2) When either V_{CCA} or V_{CCB} is at GND level, the device goes into suspend mode.

8 SPECIFICATIONS

8.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

SYMBOL	PARAMETER		MIN	MAX	UNIT		
V _{CCA} (3)	Supply Voltage Range	age Range					
V _{CCB} (3)	Supply Voltage Range		-0.5	6.5	٧		
V _I ⁽²⁾	Innut Valtage Dance	A port	-0.5	6.5	V		
V (-)	Input Voltage Range	B port	-0.5	6.5	V		
Vo (2)	Voltage range applied to any output in the high-	A port	-0.5	V _{CCA} +0.5	V		
V O '-'	impedance or power-off state	B port	-0.5	V _{CCB} +0.5	V		
I _{IK}	Input clamp current	V ₁ <0		-50	mA		
Іок	Output clamp current	Vo<0		-50	mA		
lo	Continuous output current			±50	mA		
	Continuous current through V _{CCA} , V _{CCB} or GND			±100	mA		
0	Dealtage the amed increase (4)				°C/W		
Αιθ	Package thermal impedance ⁽⁴⁾	SC70-6		265	3C/ VV		
ΓJ	Junction Temperature (5)		-40	150	°C.		
T _{stg}	Storage temperature		-65	+150			

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of VCCA and VCCB are provided in the recommended operating conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1500	V
		Machine Model (MM)	±200	V

- (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

RES74LVC1T45GW RES74AVC1T45GW

8.3 Recommended Operating Conditions

V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port.

PARA	METER	V _{CCI} ⁽¹⁾	V cco ⁽²⁾	MIN	TYP	MAX	UNIT
C	Vcca			1.65		5.5	V
Supply voltage (1)	Vccb			1.65		5.5	V
		1.65V to 1.95V		V _{CCI} x 0.75			
High-level input	D (4)	2.3V to 2.7V		V _{CCI} x 0.7			.,
Voltage (V _{IH})	Data inputs ⁽⁴⁾	3V to 3.6V		V _{CCI} x 0.7			V
		4.5V to 5.5V		V _{CCI} x 0.7			
		1.65V to 1.95V				V _{CCI} x 0.35	
Low-level input	D (4)	2.3V to 2.7V				V _{CCI} x 0.3	· .,
Voltage (V _{IL})	Data inputs ⁽⁴⁾	3V to 3.6V				V _{CCI} x 0.3	V
		4.5V to 5.5V				V _{CCI} x 0.3	
		1.65V to 1.95V		V _{CCA} x 0.75			
High-level input	DIR	2.3V to 2.7V		V _{CCA} x 0.7			.,
Voltage (V _{IH})	(referenced to V _{CCA}) ⁽⁵⁾	3V to 3.6V		V _{CCA} x 0.7			V
	· CCA/	4.5V to 5.5V		V _{CCA} x 0.7			
		1.65V to 1.95V				V _{CCA} x 0.35	
Low-level input	DIR	2.3V to 2.7V				V _{CCA} x 0.3	.,
Voltage (V _{IL})	(referenced to V _{CCA}) ⁽⁵⁾	3V to 3.6V				V _{CCA} x 0.3	V
	· ccay	4.5V to 5.5V				V _{CCA} x 0.3	
Input voltage	Vı			0		5.5	V
Output voltage	Vo			0		Vcco	٧
	•		1.65V to 1.95V			-4	
	. (1)		2.3V to 2.7V			-8	,
High-level output	current (IOH)		3V to 3.6V			-24	mA
			4.5V to 5.5V			-32	
			1.65V to 1.95V			4	
	. // \		2.3V to 2.7V			8	_
Low-level output of	current (I _{OL})		3V to 3.6V			24	mA
			4.5V to 5.5V			32	
Input transition rise or fall rate(Δt/Δv)		1.65V to 1.95V				20	
	5	2.3V to 2.7V				20	1
	Data inputs ⁽³⁾	3V to 3.6V				10	ns/V
		4.5V to 5.5V				5	1
	Control inputs	1.65 V to 5.5 V				5	1
	T _A Operating free	-air temperature	ı	-40		125	°C

⁽¹⁾ Vccı is the Vcc associated with the data input port.

⁽²⁾ V_{CCO} is the V_{CC} associated with the output port.

⁽³⁾ All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably Vccı or GND) to ensure proper device operation and minimize power.

⁽⁴⁾ For Vccı values not specified in the data sheet, VIH min = Vccı \times 0.7 V, VIL max = Vccı \times 0.3 V.

⁽⁵⁾ For VCCA values not specified in the data sheet, VIH min = VCCA \times 0.7 V, VIL max = VCCA \times 0.3 V.

8.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (1) (2)

PA	RAMETER	CONDIT	IONS	V CCA	V CCB	TEMP	MIN ⁽³⁾	TYP ⁽⁴⁾	MAX ⁽³⁾	UNIT
		I _{OH} = -100μA	V _I =V _{IH}	1.65V to 4.5V	1.65V to 4.5V		Vcco - 0.1			
		I _{OH} = -4mA	V _I =V _{IH}	1.65V	1.65V		1.2			
Vон		I _{OH} = -8mA	V _I =V _{IH}	2.3V	2.3V		1.9			V
		I _{OH} = -24mA	V _I =V _{IH}	3V	3V		2.4			
		I _{OH} = -32mA	V _I =V _{IH}	4.5V	4.5V		3.8			
		I _{OL} = 100μA	V _I =V _{IL}	1.65V to 4.5V	1.65V to 4.5V	Full			0.1	
		I _{OL} = 4mA	V _I =V _{IL}	1.65V	1.65V				0.45	
V_{OL}		I _{OL} = 8mA	V _I =V _{IL}	2.3V	2.3V				0.3	V
		$I_{OL} = 24mA$	$V_I = V_{IL}$	3V	3V				0.55	
		I _{OL} = 32mA	$V_I = V_{IL}$	4.5V	4.5V				0.55	
	DIR Input					+25°C			±1	
lı	leakage current	$V_I = V_{CCA}$ or G	IND	1.65V to 5.5V	1.65V to 5.5V	Full			±2	μΑ
	A Port			OV	0V to 5.5V	+25°C			±1	
I_{off}	B Port	V_1 or V_0 = 0 to	5.5V	0V to 5.5V	OV	Full			±2	μΑ
. (5)						+25°C			±1	_
loz ⁽⁵⁾	A or B Port	Vo=Vcco or GND		1.65V to 5.5V	1.65V to 5.5V	Full			±2	μΑ
				1.65V to 5.5V	2.3V to 5.5V	Full			3	
Icca	V _{CCA} supply current	$V_1 = V_{CCI}$ or GN $I_0 = 0$	ND ⁽⁶⁾	5V	0V	Full			2	
	current	10 – 0		0V	5V	Full			-2	μΑ
				1.65V to 5.5V	1.65V to 5.5V	Full			3	
Іссв	V _{CCB} supply current	$V_1 = V_{CCI}$ or GN $I_0 = 0$	ND (6)	5V	0V	Full			-2	μΑ
	Current	10 - 0		OV	5V	Full			2	
Icca + Iccb	Combined supply current	$V_1 = V_{CCI}$ or GN $I_0 = 0$	ND	1.65V to 5.5V	1.65V to 5.5V	Full			4	μΑ
A I	A port	One A port at 0.6 V, DIR at \ port = open		3V to 5.5V	3V to 5.5V	Full			50	μΑ
ΔI _{CCA}	DIR	DIR at V _{CCA} – B port = open A port at V _{CCA}		30 10 3.30	37 10 3.37	Full			50	μΑ
ΔІссв	B port	One B port at 0.6 V, DIR at 0 port = open		3V to 5.5V	3V to 5.5V	Full			50	μΑ
Cı	Input capacitance	DIR		3.3V	3.3V	+25°C		4		pF
C _{IO}	Input-to- output internal capacitance	A port or B Po	ort	3.3V	3.3V	+25°C		8.5		pF

⁽¹⁾ Vccı is the Vcc associated with the input port.

⁽²⁾ Vcco is the Vcc associated with the output port.

⁽³⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

⁽⁴⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

⁽⁵⁾ For I/O ports, the parameter I_{OZ} includes the input leakage current.

⁽⁶⁾ Hold all unused data inputs of the device at V_{CCI} or GND to assure proper device operation.

8.5 Timing Requirements 8.5.1 V_{CCA}=1.8V± 0.15 V

over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	то	TEMP		=1.8V 5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		3=5V 5V ⁽¹⁾	UNIT
	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	J
t _{PLH}	Α	В	Full	3.5	24.6	2.6	17.2	2.0	18.6	1.6	18.5	
t _{PHL}	A	Б	Full	3.3	18.4	2.6	15.5	2.1	16.4	2.0	16.8	ns
t _{PLH}	В	۸	Full	3.5	24.6	2.7	24.5	2.5	23.2	2.2	23.2	
t _{PHL}	В	Α	Full	3.3	18.4	2.5	18.4	2.4	15.3	2.1	14.1	ns
t _{PHZ}	DID.	۸	Full	6.2	33.9	5.7	37.1	5.6	32.3	6.1	31.9	
t _{PLZ}	DIR	Α	Full	2.7	35.9	2.5	37.3	2.8	17.8	3.7	41.7	ns
t _{PHZ}	DID.	В	Full	8.8	33.9	5.8	30.0	4.3	33.2	2.7	34.6	
t _{PLZ}	DIR	Б	Full	5.0	35.9	2.6	23.6	2.7	22.4	2.4	22.2	ns
t _{PZH} ⁽²⁾	DID	۸	Full		60.5		48.1		45.6		45.4	
t _{PZL} ⁽²⁾	DIR	Α	Full		52.3		48.4		48.5		48.7	ns
t _{PZH} ⁽²⁾	DID	D	Full		60.5		54.5		36.4		60.2	
t _{PZL} (2)	DIR	В	Full		52.3		52.6		48.7		48.7	ns

- (1) This parameter is ensured by design and/or characterization and is not tested in production.
- (2) The enable time is a calculated value, derived using the formula shown in Enable Times.

8.5.2 V_{CCA}=2.5V± 0.2 V

over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	то	TEMP		=1.8V 5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		3=5V 5V ⁽¹⁾	UNIT
	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	0
t _{PLH}	۸	В	Full	2.7	24.5	1.8	16.5	1.5	15.4	1.3	16.6	
t _{PHL}	Α	Б	Full	2.5	18.4	1.6	12.7	1.5	11.3	1.0	10.4	ns
t _{PLH}	В	А	Full	2.6	17.2	1.8	16.5	1.6	16.2	1.2	16.2	nc
t _{PHL}	Ь	A	Full	2.6	15.5	1.6	12.7	1.5	12.5	1.0	11.4	ns
t _{PHZ}	DIR	А	Full	3.6	30.0	2.5	32.8	2.7	33.2	3.8	32.4	nc
tplz	DIK	A	Full	1.5	23.6	1.5	25.7	1.5	14.8	1.2	18.1	ns
t _{PHZ}	DIR	В	Full	7.8	37.1	4.9	32.8	3.6	33.2	2.2	34.3	nc
t _{PLZ}	DIK	D	Full	4.2	37.3	2.6	25.7	3.0	26.4	1.9	26.4	ns
t _{PZH} ⁽²⁾	DIR	А	Full		54.5		42.2		42.6		42.6	nc
t _{PZL} ⁽²⁾	DIK	A	Full		52.6		45.5		45.7		45.7	ns
t _{PZH} ⁽²⁾	DID	В	Full		48.1		42.2		30.2		34.7	nc
t _{PZL} (2)	DIR		Full		48.4		45.5		44.5		42.8	ns

- (1) This parameter is ensured by design and/or characterization and is not tested in production.
- (2) The enable time is a calculated value, derived using the formula shown in Enable Times.

RES74LVC1T45GW RES74AVC1T45GW

8.5.3 V_{CCA}=3.3V± 0.3 V

over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	то	TEMP		=1.8V 5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		_B =5V 5V ⁽¹⁾	UNIT		
	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
t _{PLH}	^	В	Full	2.5	23.2	1.6	16.2	8.0	15.2	8.0	15.1			
t _{PHL}	Α	Ь	Full	2.4	15.3	1.5	12.5	0.9	10.2	0.8	10.0	ns		
t _{PLH}	В	Α	Full	2.0	18.6	1.5	15.4	8.0	15.2	0.7	15.8	nc		
t _{PHL}	D	A	Full	2.1	16.4	1.5	11.3	0.9	10.2	8.0	10.4	ns		
t _{PHZ}	DID	^	Full	2.7	33.2	2.8	33.2	1.8	34.3	2.8	32.8			
t _{PLZ}	DIR	Α	Full	2.1	22.4	1.9	26.4	2.2	15.1	2.4	19.5	ns		
t _{PHZ}	DID	В	Full	6.4	32.3	4.6	33.2	3.4	34.3	2.0	34.1			
t _{PLZ}	DIR	Б	Full	2.7	17.8	2.5	14.8	2.8	15.1	1.8	14.8	ns		
t _{PZH} ⁽²⁾	DID	^	Full		36.4		30.2		30.3		30.6			
t _{PZL} ⁽²⁾	DIR	DIR	DIR	А	Full		48.7		44.5		44.5		44.5	ns
t _{PZH} ⁽²⁾	DID	D	Full		45.6		42.6		30.3		34.6			
t _{PZL} ⁽²⁾	DIR	В	Full		48.5		45.7		44.5		42.8	ns		

- (1) This parameter is ensured by design and/or characterization and is not tested in production.
- (2) The enable time is a calculated value, derived using the formula shown in Enable Times.

8.5.4 V_{CCA}=5V± 0.5 V

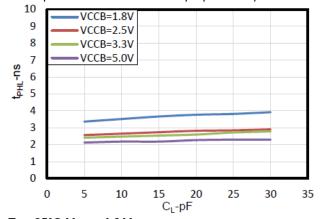
over recommended operating free-air temperature range, Full=-40°C to 125°C.

PARAMETER	FROM	то	TEMP		=1.8V 5V ⁽¹⁾		=2.5V 2V ⁽¹⁾		=3.3V 3V ⁽¹⁾		_B =5V 5V ⁽¹⁾	UNIT
.,	(INPUT)	(OUTPUT)	1 = 1.1.1.	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	0
t _{PLH}	۸	В	Full	2.2	23.2	1.2	16.2	0.7	15.8	0.6	15.2	
t _{PHL}	Α	В	Full	2.1	14.1	1.0	11.4	8.0	10.4	0.6	9.5	ns
t _{PLH}	В	Α	Full	1.6	18.5	1.3	16.6	0.8	15.1	0.6	15.2	20
t _{PHL}	В	А	Full	2.0	16.8	1.0	10.4	8.0	10.0	0.6	9.5	ns
t _{PHZ}	DIR	Α	Full	2.5	34.6	2.4	34.3	2.6	34.1	2.4	33.4	nc
t _{PLZ}	DIK	А	Full	1.0	22.2	1.2	26.4	1.2	14.8	1.0	19.0	ns
t _{PHZ}	DIR	В	Full	5.7	31.9	3.0	32.4	1.2	32.8	2.0	33.4	20
t _{PLZ}	DIK	D	Full	3.1	41.7	2.4	18.1	3.0	19.5	1.9	19.0	ns
t _{PZH} ⁽²⁾	DIR	۸	Full		60.2		34.7		34.6		34.2	nc
t _{PZL} ⁽²⁾	DIK	IR A	Full		48.7		42.8		42.8		42.9	ns
t _{PZH} ⁽²⁾	DID	В	Full		45.4		42.6		30.6		34.2	
t _{PZL} (2)	DIR	В	Full		48.7		45.7		44.5		42.9	ns

- (1) This parameter is ensured by design and/or characterization and is not tested in production.
- (2) The enable time is a calculated value, derived using the formula shown in Enable Times.

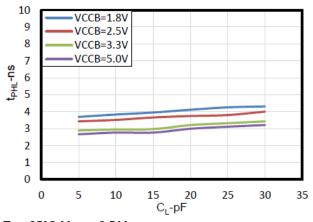
8.6 Operating Characteristics

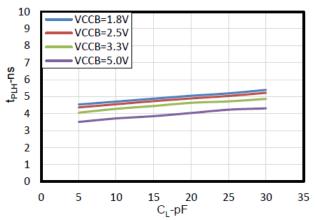
T_A=25°C


PARAMETER (1)		CONDITIONS V _{CCA} =V _{CCB} =1.8V		V _{CCA} =V _{CCB} =2.5V	V _{CCA} =V _{CCB} =3.3V	V _{CCA} =V _{CCB} =5V	UNIT	
			TYP	TYP	TYP	TYP		
C _{pdA}	A-port input, B-port output		3	4	6	9	pF	
	B-port input, A-port output	$C_L=0pF$ $f=10MHz$ $t_r=t_f=5ns$	14	17	22	32	рг	
C _{pdB}	A-port input, B-port output		14	16	21	32		
	B-port input, A-port output		3	4	6	9	pF	

⁽¹⁾ Power dissipation capacitance per transceiver

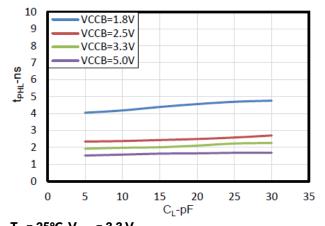
8.7 Typical Characteristics

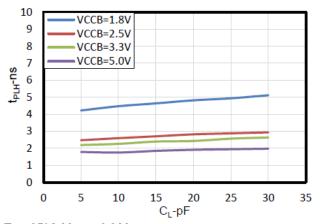

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.



10 VCCB=1.8V 9 VCCB=2.5V 8 VCCB=3.3V VCCB=5.0V 7 t_{PLH}-ns 6 5 4 3 2 1 0 0 5 10 20 30 35 15 25 C_L -pF

T_A = 25°C, V_{CCA} = 1.8 V Figure 1. Typical Propagation Delay High-to-Low (A to B) vs Load Capacitance

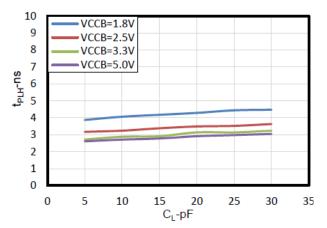

T_A = 25°C, V_{CCA} = 1.8 V Figure 2. Typical Propagation Delay Low-to-High (B to A) vs Load Capacitance



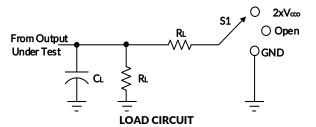
T_A = 25°C, V_{CCA} = 2.5 V Figure 3. Typical Propagation Delay High-to-Low (A to B) vs Load Capacitance

T_A = 25°C, V_{CCA} = 2.5 V Figure 4. Typical Propagation Delay Low-to-High (B to A) vs Load Capacitance

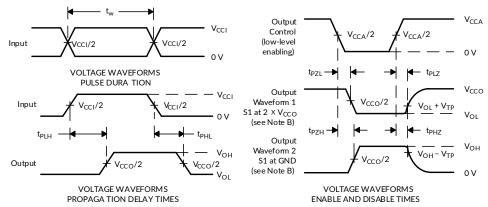



T_A = 25°C, V_{CCA} = 3.3 V Figure 5. Typical Propagation Delay High-to-Low (A to B) vs Load Capacitance

T_A = 25°C, V_{CCA} = 3.3 V Figure 6. Typical Propagation Delay Low-to-High (B to A) vs Load Capacitance


T_A = 25°C, V_{CCA} = 5 V Figure 7. Typical Propagation Delay High-to-Low (A to B) vs Load Capacitance

T_A = 25°C, V_{CCA} = 5 V Figure 8. Typical Propagation Delay Low-to-High (B to A) vs Load Capacitance



9 Parameter Measurement Information

TEST	S1				
t_{pd}	Open				
t _{PLZ} /t _{PZL}	2 X Vcco				
t _{PHZ} /t _{PZH}	GND				

V cc	CL	RL	V _{TP}
1.8V±0.15V	15pF	2kΩ	0.15V
2.5V±0.2V	15pF	2kΩ	0.15V
3.3V±0.3V	15pF	2kΩ	0.3V
5V±0.5V	15pF	2kΩ	0.3V

NOTES: A.C_L includes probe and jig capacitance.

- B.Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \,\Omega_1$, $dv/dt \geq 1V/ns$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\text{PLZ}} \, \text{and} \, \, t_{\text{PHZ}} \, \text{are the same as} \, \, t_{\text{dis}}.$
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. All parameters and waveforms are not applicable to all devices.

Figure 9. Load Circuit and Voltage Waveforms

10 Application and Implementation

10.1 Application Information

RES74LVC(AVC)1T45 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The maximum output current can be up to 32 mA when device is powered by 5 V.

10.1.1 Enable Times

Calculate the enable times for the RES74LVC(AVC1T45)us ingthe following fomulas:

- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the RES74LVC(AVC)1T45 initia II yistransmitt ing from AtoB, the ntheDIR bits switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

10.2 Typical Application

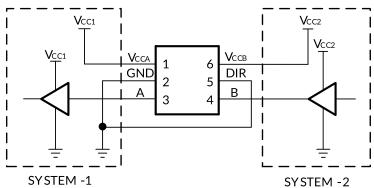


Figure 10. Unidirectional Logic Level-Shifting Application (B to A)

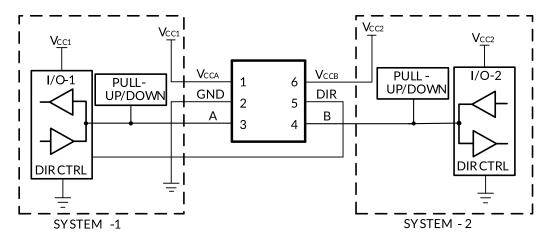
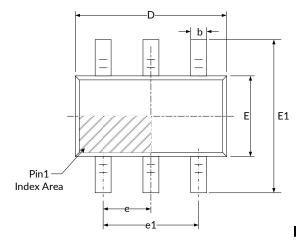
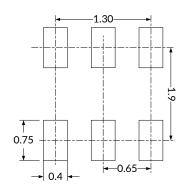
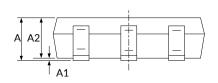
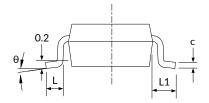




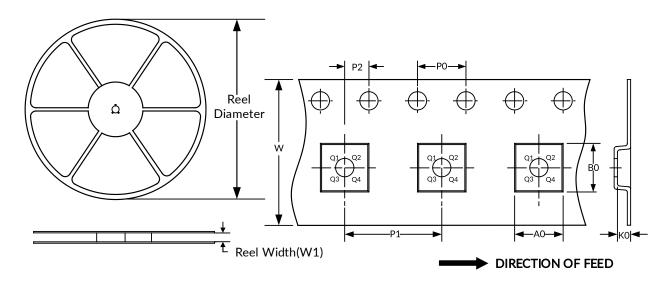
Figure 11. Bidirectional Logic Level-Shifting Application (B to A or A to B)




SC70-6 (3)

RECOMMENDED LAND PATTERN (Unit: mm)

Complete	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A (1)	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150 0.3		0.006	0.014		
С	0.080	0.150	0.003	0.006		
D (1)	2.000	2.200	0.079	0.087		
E (1)	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.650 (BSC) ⁽²⁾		0.026 (BSC) ⁽²⁾			
e1	1.300 (1.300 (BSC) (2)		0.051 (BSC) (2)		
L	0.260	0.460	0.010	0.018		
L1	0.5	0.525 0.021)21		
θ	0°	8°	0°	8°		


NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

12 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-6	7"	9.5	2.40	2.50	1.20	4.0	4.0	2.0	8.0	Q3

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.